Aldo Pacchiano
Home
Publications
Contact
Talks
Publications
Type
Conference paper
Journal article
Preprint
Thesis
Date
2024
2023
2022
2021
2020
2019
2018
2017
2015
2012
0001
Mingyu Chen
,
Aldo Pacchiano
,
Xuezhou Zhang
(2024).
State-free Reinforcement Learning
.
PDF
Aldo Pacchiano
(2024).
Second Order Bounds for Contextual Bandits with Function Approximation
.
PDF
Aida Afsar
,
Aldo Pacchiano
(2024).
Learning Rate-Free Reinforcement Learning: A Case for Model Selection with Non-Stationary Objectives
.
PDF
Dipendra Misra*
,
Aldo Pacchiano*
,
Robert Schapire*
(2024).
Provable Interactive Learning with Hindsight Instruction Feedback
. ICML 2024.
PDF
Yilei Chen
,
Aldo Pacchiano
,
Ioannis Ch. Paschalidis
(2024).
Multiple-policy Evaluation via Density Estimation
.
PDF
Nirjhar Das
,
Souradip Chakraborty
,
Aldo Pacchiano
,
Sayak Ray Chowdhury
(2024).
Provably Sample Efficient RLHF via Active Preference Optimization
.
PDF
Chinmaya Kausik
,
Mirco Mutti
,
Aldo Pacchiano
,
Ambuj Tewari
(2024).
A Framework for Partially Observed Reward-States in RLHF
.
PDF
Aldo Pacchiano
,
Chris Dann
,
Claudio Gentile
(2024).
Data-Driven Regret Balancing for Online Model Selection in Bandits
. AISTATS 2024.
PDF
Aldo Pacchiano
,
Mohammad Ghavamzadeh
,
Peter Bartlett
(2024).
Contextual Bandits with Stage-wise Constraints
.
PDF
Sinong Geng
,
Aldo Pacchiano
,
Andrey Kolobov
,
Ching-An Cheng
(2024).
Improving Offline RL by Blending Heuristics
. ICLR 2024.
PDF
Aldo Pacchiano
,
Jonathan Lee
,
Emma Brunskill
(2023).
Experiment Planning with Function Approximation
.
PDF
Jonathan Lee
,
Annie Xie
,
Aldo Pacchiano
,
Yash Chandak
,
Chelsea Finn
,
Ofir Nachum
,
Emma Brunskill
(2023).
Supervised Pretraining Can Learn In-Context Reinforcement Learning
.
PDF
Parnian Kassraie
,
Aldo Pacchiano
,
Nicolas Emmengger
,
Andreas Krause
(2023).
Anytime Model Selection in Linear Bandits
.
PDF
Abhi Gupta
,
Ted Moskovitz
,
David Alvarez-Melis
,
Aldo Pacchiano
(2023).
Transfer RL via the Undo Maps Formalism
.
PDF
Nataly Brukhi
,
Miroslav Dudik
,
Aldo Pacchiano
,
Robert Schapire
(2023).
A Unified Model and Dimension for Interactive Estimation
.
PDF
Andrew Wagenmaker
,
Aldo Pacchiano
(2023).
Leveraging Offline Data in Online Reinforcement Learning
. ICML 2023.
PDF
Jonathan Lee
,
Weihao Kong
,
Aldo Pacchiano
,
Vidya Muthukumar
,
Emma Brunskill
(2023).
Estimating Optimal Policy Value in General Linear Contextual Bandits
. TMLR.
PDF
Jeffrey Chan*
,
Aldo Pacchiano*
,
Nilesh Tripuraneni*
,
Yun S. Song
,
Peter Bartlett
,
Michael Jordan
(2023).
Parallelizing Contextual Bandits
.
PDF
Aldo Pacchiano
,
Drausin Wulsin
,
Robert A. Barton
,
Luis Voloch
(2023).
Neural Design for Genetic Perturbation Experiments
. ICLR 2023.
PDF
Aldo Pacchiano*
,
Aadirupa Saha*
,
Jonathan Lee
(2023).
Dueling RL: Reinforcement Learning with Trajectory Preferences
. AISTATS 2023.
PDF
Aldo Pacchiano
,
Peter Bartlett
,
Michael Jordan
(2022).
An Instance-Dependent Analysis for the Cooperative Multi-Player Multi-Armed Bandit
. ALT 2023.
PDF
Abhishek Gupta*
,
Aldo Pacchiano*
,
Yuexiang Zhai
,
Sham Kakade
,
Sergey Levine
(2022).
Unpacking Reward Shaping: Understanding the Benefits of Reward Engineering on Sample Complexity
. NeurIPS 2022.
PDF
Jack Parker-Holder*
,
Yingchen Xu*
,
Philip Ball*
,
Aldo Pacchiano*
,
Oleh Rybkin
,
Stephen Roberts
,
Tim Rocktäschel
,
Edward Grefenstette
(2022).
Learning General World Models in a Handful of Reward-Free Deployments
. NeurIPS 2022.
PDF
Aldo Pacchiano
,
Ofir Nachum
,
Nilesh Tripuraneni
,
Peter Bartlett
(2022).
Joint Representation Training in Sequential Tasks with Shared Structure
.
PDF
Aldo Pacchiano
,
Christoph Dann
,
Claudio Gentile
(2022).
Best of Both Worlds Model Selection
. NeurIPS 2022.
PDF
Darren Lin*
,
Aldo Pacchiano*
,
Yaodong Yu*
,
Michael Jordan
(2022).
Online Nonsubmodular Minimization with Delayed Costs: From Full Information to Bandit Feedback
. ICML 2022.
PDF
Robert Müller
,
Aldo Pacchiano
(2022).
Meta Learning MDPs with Linear Transition Models
. AISTATS 2022.
PDF
Xingyou Song
,
Krzysztof Choromanski
,
Jack Parker-Holder
,
Yunhao Tang
,
Qiuyi Zhang
,
Daiyi Peng
,
Deepali Jain
,
Wenbo Gao
,
Aldo Pacchiano
,
Tamas Sarlos
,
Yuxiang Yang
(2021).
ES-ENAS: Blackbox Optimization over Hybrid Spaces via Combinatorial and Continuous Evolution
.
PDF
Aldo Pacchiano
,
Shaun Singh
,
Edward Chou
,
Alexander C. Berg
,
Jakob Foerster
(2021).
Neural Pseudo-Label Optimism for the Bank Loan Problem
. NeurIPS 2021.
PDF
Ted Moskovitz
,
Michael Arbel
,
Jack Parker-Holder
,
Aldo Pacchiano
(2021).
Towards an Understanding of Default Policies in Multitask Policy Optimization
. AISTATS 2022.
PDF
Matteo Papini
,
Andrea Trinzioni
,
Aldo Pacchiano
,
Marcello Restelli
,
Alessandro Lazaric
,
Matteo Pirotta
(2021).
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection
. NeurIPS 2021.
PDF
Krzysztof Choromanski
,
Deepali Jain
,
Wenhao Yu
,
Xingyou Song
,
Jack Parker-Holder
,
Tingnan Zhang
,
Valerii Likhosherstov
,
Aldo Pacchiano
,
Anirban Santara
,
Yunhao Tang
,
Jie Tan
,
Adrian Weller
(2021).
Unlocking Pixels for Reinforcement Learning via Implicit Attention
.
PDF
Aldo Pacchiano
,
Philip Ball
,
Jack Parker-Holder
,
Krzysztof Choromanski
,
Stephen Roberts
(2021).
Towards Tractable Optimism in Model-Based Reinforcement Learning
. UAI 2021.
PDF
Dhruv Malik
,
Aldo Pacchiano
,
Vishwak Srinivasan
,
Yuanzhi Li
(2021).
Sample Efficient Reinforcement Learning In Continuous State Spaces: A Perspective Beyond Linearity
. ICML 2021.
PDF
Ashok Cutkosky*
,
Christoph Dann*
,
Abhimanyu Das*
,
Claudio Gentile*
,
Aldo Pacchiano*
,
Manish Purohit*
(2021).
Dynamic Balancing for Model Selection in Bandits and RL
. ICML 2021.
PDF
Aldo Pacchiano
(2021).
Model Selection for Contextual Bandits and Reinforcement Learning
.
PDF
Niladri S. Chatterji*
,
Aldo Pacchiano*
,
Peter L. Bartlett
,
Michael I. Jordan
(2021).
On the Theory of Reinforcement Learning with Once-per-Episode Feedback
. NeurIPS 2021.
PDF
Jeffrey Chan*
,
Aldo Pacchiano*
,
Nilesh Tripuraneni*
,
Yun S. Song
,
Peter Bartlett
,
Michael Jordan
(2021).
Parallelizing Contextual Linear Bandits
.
PDF
Aldo Pacchiano
,
Mohammad Ghavamzadeh
,
Peter Bartlett
,
Heinrich Jiang
(2021).
Stochastic Bandits with Linear Constraints
. AISTATS 2021.
PDF
Heinrich Jiang*
,
Qijia Jiang*
,
Aldo Pacchiano*
(2021).
Learning the Truth From Only One Side of the Story
. AISTATS 2021.
PDF
Aldo Pacchiano
,
Jonathan Lee
,
Peter Bartlett
,
Ofir Nachum
(2021).
Near Optimal Policy Optimization via REPS
. NeurIPS 2021.
PDF
Ted Moskovitz
,
Jack Parker-Holder
,
Aldo Pacchiano
,
Michael Arbel
,
Michael Jordan
(2021).
Tactical Optimism and Pessimism for Deep Reinforcement Learning
. NeurIPS 2021.
PDF
Silvia Chiappa*
,
Aldo Pacchiano*
(2021).
Fairness with Continuous Optimal Transport
.
PDF
Jack Parker-Holder
,
Luke Metz
,
Cinjon Resnick
,
Hengyuan Hu
,
Adam Lerer
,
Alistair Letcher
,
Alexander Peysakhovich
,
Aldo Pacchiano
,
Jakob Foerster
(2020).
Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian
. NeurIPS 2020.
PDF
Aldo Pacchiano*
,
My Phan*
,
Yasin Abbasi-Yadkori
,
Anup Rao
,
Julian Zimmert
,
Tor Lattimore
,
Csaba Szepesvari
(2020).
Model Selection in Contextual Stochastic Bandit Problems
. NeurIPS 2020.
PDF
Aldo Pacchiano*
,
Jack Parker-Holder*
,
Krzysztof Choromanski
,
Stephen Roberts
(2020).
Effective Diversity in Population-Based Reinforcement Learning
. NeurIPS 2020.
PDF
Krzysztof Choromanski
,
David Cheikhi
,
Jared Davis
,
Valerii Likhosherstov
,
Achille Nazaret
,
Achraf Bahamou
,
Xingyou Song
,
Mrugank Akarte
,
Jack Parker-Holder
,
Jacob Bergquist
,
Yuan Gao
,
Aldo Pacchiano
,
Tamas Sarlos
,
Adrian Weller
,
Vikas Sindhwani
(2020).
Stochastic Flows and Geometric Optimization on the Orthogonal Group
. ICML 2020.
PDF
Philip Ball
,
Jack Parker-Holder
,
Aldo Pacchiano
,
Krzysztof Choromanski
,
Stephen Roberts
(2020).
Ready Policy one: World Building Through Active Learning
. ICML 2020.
PDF
Eric Mazumdar*
,
Aldo Pacchiano*
,
Yian Ma
,
Michael Jordan
,
Peter Bartlett
(2020).
On Approximate Thompson Sampling with Langevin Algorithms
. ICML 2020.
PDF
Aldo Pacchiano
,
Jack Parker-Holder
,
Yunhao Tang
,
Krzysztof Choromanski
,
Anna Choromanska
,
Michael Jordan
(2020).
Learning to Score Behaviors for Guided Policy Optimization
. ICML 2020.
PDF
Jonathan Lee
,
Aldo Pacchiano
,
Peter Bartlett
,
Michael Jordan
(2020).
Accelerated Message Passing for Entropy-Regularized MAP Inference
. ICML 2020.
PDF
Aldo Pacchiano
,
Chris Dann
,
Claudio Gentile
,
Peter L. Bartlett
(2020).
Regret Bound Balancing and Elimination for Model Selection in Bandits and RL
.
PDF
Jonathan Lee
,
Aldo Pacchiano
,
Vidya Muthukumar
,
Weihao Kong
,
Emma Brunskill
(2020).
Online Model Selection for Reinforcement Learning with Function Approximation
. AISTATS 2021.
PDF
Ray Jiang*
,
Aldo Pacchiano*
,
Tom Stepleton
,
Heinrich Jiang
,
Silvia Chiappa
(2020).
Wasserstein Fair Classification
. UAI 2019.
PDF
Robert Müller
,
Jack Parker-Holder
,
Aldo Pacchiano
(2020).
Taming the Herd: Multi-Modal Meta-Learning with a Population of Agents
. ICML 2020 Workshop Lifelong ML.
PDF
Yasin Abbasi-Yadkori
,
Aldo Pacchiano
,
My Phan
(2020).
Regret Balancing for Bandit and RL Model Selection
.
PDF
Krzysztof Choromanski*
,
Aldo Pacchiano*
,
Jack Parker-Holder*
,
Yunhao Tang*
(2020).
Practical Nonisotropic Monte Carlo Sampling in High Dimensions via Determinantal Point Processes
. AISTATS 2020.
PDF
Jonathan Lee*
,
Aldo Pacchiano*
,
Michael Jordan
(2020).
Convergence Rates of Smooth Message Passing with Rounding in Entropy-Regularized MAP Inference
. AISTATS 2020.
PDF
Krzysztof Choromanski*
,
Aldo Pacchiano*
,
Jack Parker-Holder*
,
Yunhao Tang
,
Deepali Jain
,
Yuxiang Yang
,
Atil Iscen
,
Jasmine Hsu
,
Vikas Sindhwani
(2020).
Provably Robust Blackbox Optimization for Reinforcement Learning
. CoRL 2019.
PDF
Aldo Pacchiano
,
Heinrich Jiang
,
Michael Jordan
(2020).
Robustness Guarantees for Mode Estimation with an Application to Bandits
. AAAI 2021.
PDF
Krzysztof Choromanski*
,
Aldo Pacchiano*
,
Jack Parker-Holder*
,
Yunhao Tang*
,
Vikas Sindhwani
(2019).
From Complexity to Simplicity: Adaptive ES-Active Subspaces for Blackbox Optimization
. NeurIPS 2019.
PDF
Xingyou Song
,
Wenbo Gao
,
Yuxiang Yang
,
Krzysztof Choromanski
,
Aldo Pacchiano
,
Yunhao Tang
(2019).
ES-MAML: Simple Hessian-Free Meta Learning
. ICLR 2020.
PDF
Xingyou Song
,
Krzysztof Choromanski
,
Jack Parker-Holder
,
Yunhao Tang
,
Wenbo Gao
,
Aldo Pacchiano
,
Tamas Sarlos
,
Deepali Jain
,
Yuxiang Yang
(2019).
Reinforcement Learning with Chromatic Networks for Compact Architecture Search
.
PDF
Aldo Pacchiano
,
Yoram Bachrach
(2019).
Computing Stable Solutions in Threshold Network Flow Games With Bounded Treewidth
. AAMAS 2019.
PDF
Krzystof Choromanski*
,
Aldo Pacchiano*
,
Jeffrey Pennington*
,
Yunhao Tang*
(2019).
KAMA-NNs: Low-Dimensional Rotation Based Neural Networks
. AISTATS 2019.
PDF
Kush Bhatia*
,
Aldo Pacchiano*
,
Nicolas Flammarion
,
Peter Bartlett
,
Michael Jordan
(2018).
Gen-Oja: A Two-time-scale approach for Streaming CCA
. NeurIPS 2018.
PDF
Aldo Pacchiano*
,
Niladri S. Chatterji*
,
Peter L. Bartlett
(2018).
Online learning with kernel losses
. In
ICML 2019
.
PDF
Mohammed Amin Abdullah*
,
Aldo Pacchiano*
,
Moez Draief
(2018).
Reinforcement Learning with Wasserstein Distance Regularisation, with Applications to Multipolicy Learning
. EWRL 2018.
PDF
Mark Rowland
,
Aldo Pacchiano
,
Adrian Weller
(2017).
Conditions Beyond Treewidth for Tightness of Higher-order LP Relaxations
. AISTATS 2017.
PDF
Aldo Pacchiano
,
Oliver Williams
(2015).
Real Time Clustering of Time Series Using Triangular Potentials
.
PDF
Pavel Etingof
,
Sherry Gong
,
Aldo Pacchiano
,
Qingchun Ren
,
Travis Schedler
(2012).
Computational Approaches to Poisson Traces Associated to Finite Subgroups of Sp2n(C)
. Journal of Experimental Mathematics.
PDF
Aldo Pacchiano
(0001).
Trace Reconstruction Problem
.
PDF
Mark Rowland
,
Krzysztof Choromanski
,
François Chalus
,
Aldo Pacchiano
,
Tamas Sarlos
,
Richard E Turner
,
Adrian Weller
(0001).
Geometrically Coupled Monte Carlo Sampling
. NeurIPS 2018; spotlight presentation.
PDF
Silvia Chiappa
,
Ray Jiang
,
Tom Stepleton
,
Aldo Pacchiano
,
Heinrich Jiang
,
John Aslanides
(0001).
A General Approach to Fairness with Optimal Transport
. AAAI 2020.
PDF
Cite
×